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ABSTRACT 

Effecte of electron-ion and electron-electron correlatione on 

plasma oscillations have been etudied by obtaining an  approximate 

solution for  the f i r e t  two members of the BBGKY hierarchy, Electron- 

ion correlations are shown to be especially important, for  they produce, 

in  the long wavelength limit: (1) a damping independent of wave number 

1c; (2)  a ernall. correction to the plasma wave frequency which ie inde- 

pendent of wavelength and thua modifies the Langmuir plasma freqwrLcy. 

The damping which i s  wavelength independent predominate8 over 

Landau damping and i s  in  close agreement with the damping obtained 

f rom high frequency conductivity calculations. 4-7 

For  both the damping and the dispersion relation, electron- 

electron correlation8 a r e  found to appear f i r s t  in t e rms  proportional 

to k . 
correlations, have alao been computed. 

with those made previously. 

2 These te rms ,  as well a e  the k2 terme f rom electron-ion 

Our results a r e  compared 

1,2 

E ,  

t 



- .  

-1 - 

I* Introduction 

There have been several  attempts r e ~ e n t l y l - ~  to examine the 

effects of pa i r  correlations on plasma oscillations by ueing the BBGKY 

hierarchy. 

correlationa were considered and electron-ion correlations wero 

ignored. 

length limit, the la rges t  damping was proportional to k , where k i o  

the wave number. 

to  the plasma wave frequency which i s  proportional to IC 

Ichikawa’ and Willie‘ approximated the equation for  the two electron 

correlation function by dropping numerouo terms.  

although they solved the aame equation, they obtained considerably 

diffcrent numerical  results. 

a more  complete solution for  the damping but have not yet presented 

nume rical results 

In all  of these cases,  however, only electron-electron 

It was found by all of these authore that, in the long wave- 

2 

Also, it was foundle2 that there is a small correction 
2 Both 

Furthcrmorc, 

Gorman and Montgomery3 have obta:lned 

W e  have also used the BBGKY hierarchy to study the effect of 

pa i r  correlations on plaema oscillations. Although our solution of the 

binary correlation equations i a  approximate, our analysis i e  more 

complete than either Ichikawa o r  Willie, both by considering electron- 

ion correlations and by including in the electron-electron correlation 

equation many t e rms  which they dropped, 

long wavelength limit: 

We have obtained, in the 

1, A damping independent of wave number ie i -c i i i i l t ing frcz- 

electron-ion correlations; 

2. damping proportional to k2 f rom both electron-electron 

and electron-ion correlations; 

I‘ 

i:J ! 

! 

: .  
I :  
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i f rom electron-ion correlations which ie  independent of wave- 

length; 
t 

4, corrections to the dispereion relation which are proportional t.  
E ; 

to k 4 

i. A damping independent of the wave number ha6 been found pre-  L 
t *  
i t 
i 

J 
I. 
! 
) 

t 
i 
i 

,* 
~ Vi0udy4-’l. A l l  of these authors obtained the high frequency conductivity 

f rom which, a s  shown by DuBois, Cilineky and KiV€?180n6, the plaerna 

wave damping can be determined, In reference8 4, 6 and 7, diagram- 

matic techniques were employed for the calculation, while in reference (5) 

the aolution of the BBGKY hierarchy for a homogeneous plasma with an 

externally applied oscillating electric fie3d wae u s e d  Thue fa r ,  only i 
! 

the conductivity a(w) which i e  independent of waveiength ham been given r 
t * 

explicitly , 

a r e  in agreement, The numerical result  for  the damping obtained f rom 

the conductivity is in reasonably good agreement with the resul t  which 

F o r  the infinite ion mas8 limit, the reaults of these authors I 

L 

i 
b 

4 t 
I 

we have obtained. 

Section IV. 

Further diecussion of this mat ter  will  be given in  
j 

In Section 11, we preeent the baeic mathematical formulation, 

The approximations used to eolve the pa i r  correlation equations a r e  
I 

introduced and a separation of collisional and collective correlations 

is affected, In Section I11 the plasma wave damping and the dispersion 

relation are computed in the long wavelength and infinite ion male limits ! 

and a discusrion of the results is given in Section IV, 

*According to reference 961, the reault proportional to k2 publiehed 
i o  not correct. ea r l i e r  by these authors 
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11. Mathematical Formulation 

We consider a gas of electrons and ions interacting or3y throEgh 

The ions a r e  assumed to be uniformly distributed and Coulomb forces. 

immovable with respect to the high frequency electron oscillations and 

to  be in thermal  equilibrium with the electrons in the absence of electron 

oscillations, 

be truncated by nn expnnaiorl echcrn3,' @lo although the cxpansion pnrnmcto r 

is not unique, 

inverse number of particles in a Debye sphere, the f i r s t  two r n e m h r e  

of the hierarchy can be written in  l inearized fo rm a s  

The BBGKY hierarchy used to describe such a system can 

To f i re t  o rde r  in the plaarna parameter  g (A&)-', the 

ne 2 esY2 
--_I_ 

3 #,T 
L I b  A t- 
a i l  

2 Zne 
M 

-- 
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I 

where f, 6, and 8 a r e  the perturbed one-electron distribution function, 

electron-electron and electron-ion correlation functions, respectively, 

The arguments T ,  R, v, V, m, EAn n and N re fer  respectively to the 

olccrron and ion position, valodty, maaa and numbor dcnsity. 

o is tho absolute value and Z is the atomic number of the ions. Other 

4 - 3 -  

Tkc c h x g c  
* 

4 Wo consider one kind of ion only. 
with many kinds of ions i s  straightforward. 

TO extend o u r  discussion to a plaema 
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quantities appearing in equations (l), (2) and (3) are given as follovm: 

MV? 

(4 a) 

and q2 are, respectively, the equilibrium  he quantities P, F', g12 

values for tho distribution functiona and the electron-electron and clectron- 

ion correlation functions. 

0 

The exact eolution of the singular i n t c g r d  equations (2) and (3) 

can be obtained formally as  discussed in reference8 (IS) and (12). I?Iaw- 

c-,-cr, Because ~f the complexity of the solution, it is diff icdt  to obtain 

numerical  results and to obtain phyeical insight into the m o u l t s .  

we will  give an approximate treatment to tho integral  t e r m s  on the right- 

hand side of equations (2) and (3) which will make the analysis more 

tractable. Noting that, in equilibrium, 

Thus, 

r 



r 

. .  

- I  
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we write g12 in the form 

and, for the integral t e rms  in equation (2), assume that the last t e r m  in 

equation ( 5 )  is negligible. 
J( 

we UBB the approximate solution. 

Similarly, for  the integral term8 in equation (3) 

With theee approximations, and using the relation 

(7) 

equations (2) and (3) reduce t o  

3- 13 
An approximate solution eimilar to this was used by Kadomtsev . 
equations, however, were not linearized, 

Hir 
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L. L 

( 9 )  

! 
. I  The first t e r m  on the right-hand side of these equation8 repreeents 

. !; 
! 1  

direct  two-particle interactions. 

homogonaoua cam,  lo 

These t e r m s  a r e  reeponeible, in the 

the main atructure of the Fokkcr-Planck type , 

1 collision integral. They will be re fer red  to henceforth ae the collietonal 
i 

correlation terms. On the other hand, the remainder of the t e rms  on the 

right-hand aide of equations (8) and (9) rcpreerent integrals of two-particle 

1 , 
I 

interactions via a third particle. They will be re fer red  to as collectivc 

b - - - - -1-&JA- w-a+;.-.c. 6 = -a+ ,b a n A  n = na + Q y,rher=. sGpGr= - C U I I S A Q L I U L A  C O A A & J P b  V1 I & L b b L &  8 '1 - y 

gcripts a and b refer t o  the sqlutiono of the collisional and collective 

* parte reepectlvely. 

e 

r' 
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Following the ideas of B o g o l i u b o ~ ~ ~ ~  we assume that the relaxation time 

of the collisional correction function ie short compared to the relaxation 

time of the one-electron distribution function. 

it is Bhorter than the pcriod of a plasma oocillation BO that, on the 

relaxation time scale for  ga(t) and qa(t), 

stationary. 

In fact, we will aneurne 

f ( t )  can ba aaeumzd 

After a short  tima the effect of the initial correlation is 

forgotten and, on the relaxation t ime ~ c a l e  of f 

asymptotic value for ga and Sa, which w e  call 

eqnation (LO) will he replaced by 

w e  will only need the 

a and Q,. Explicitly, a 
gco 

i 

I 

, € 

t 

I 

! 
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where, by g, we mean (1) for the calculation of ga(t) and Ga(t) we 

will a ~ s u r n e  f i r ~  stationary in timet and (2) we will  then take the limit 

' t 300 .  $ 

In the study of placlma oecillations in  the long wavelength limit, 

it is reaeonable to a i i u m e  that the inhomogeneitiee in  the density occur 

with a chnracteriatic length many timce l a rge r  than tha Dobye dirtanca. 

However, the collisional correlation terma represent direct  interactions 

which occur almoet entirely within a Debye distance, (Noteathat x12 
, 

. I  

a -  -+ containa a shielding factor. ) Thus, we will assume that g (rl, r2, . ) = 

-.c 
study of these quantitiee, f(rl,. . ,) can be aaeumed spa t id ly  uniform. 

We now introduce the Fourier-Laplace tranaforms am, fOl lOW8:  

Employing the inverae tranaforms, equation (11) can be rewritten 

as 

(see next page) 

.." ' 



. .  

. .  

where, for the collioional correction terms, 

that 

(15) 

we have utilized the fact 

Taking the Fourier-Laplace traneforma of equations (8) and (9), 

we obtain 
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1 

where go and Bo a r e  the Fourier  transforms of the i n i t i d  conditions, 

and where 
7 1/2 

4nne 
P 

2 

2n(k- -f k,; 

kD 
2 . 2  y (k) = - 

In equations (19) and (20) it ia to be noted that, in accordance with ea r l i e r  

remarks,  the explicit time and space dependence of the perturbed one- 
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electron distribution function has been retained. Also, because of the 
-c-c 4 4  

spatial homogeneity, f(r 2, v2D t) has been replaced by f(rl , v2# t). 
t 

Finally, eubstituting equations (17) -(20) into equation (15), we obtain 

t 

where \kee and \I, 

equations (I?) and (181, respectively. 

value integral aasaciated with the operation lim +, 

a r e  those t e rms  contained in { } bracket i n  e b 

It is to be noted that the principal 

- - i 

y-0 1c ,e (y1-v7,) - iy 
u ". vani ehc a bo caus c' -r? --c -+ P inoL ,x2: 1.- - .r  \l + \"I. . 2 ' J  -* - 

le2* -+ (&) 

the integrand of the k2 integral is antisymmetric. 

Finally, by taking the Fourier-Laplace traneformation of equation 

(22), a straightforward calculation leads to the reeult  
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--c 3 

p(k+ u)[1 - I - Ile- Ili' IZe- IZi- Ig,- 13;1 = C(k$ 

w h e  r e  
! 
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The path of intogration for  the Tl integrals has been diacueeed 

15 by Landau. 

(8 = 1,2,3), in the long wavelength limit, the indented par i  zlf thz L3~&\1 

We have found that, for the ccqmtn t ion  of I a e  and IGi 

contour only gives small, high o=der  contributions. Thus, we will 

simplify our  diecusfjion of theee i n t e g r d s  by repiacing 

which is in  the complex u = (5' vl)/k plane, by the rea l  axis, 

Lar;da:: c ( ~ T ? ~ C ? ~ E ,  

- 4  

In Section 111, the relationehip of equation (23) to the damping and 

the dispersion relation for electron plasma oscillations will be developed. 
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n-L i l len the collisional t e rms  Ile and Ili will be studied and it wil l  be 

shown that within certain approximations, these quantities a r e  inde- 

pendent of p(kl,w). 

numerical results for the damping and the diepersion relation will be 

3 

All  of the I t e rms  will be evaluated and, finally, 

given. 

111. Plume r ic a1 C a1 c ul ati ons 

It i e  Been by examination of equation (23) that the dispersion 

equation is given by 

1 - I - Ile - Ili- Ize- IZ1 - 13e' IJi = 0 (25) 

16 
Following the method presented by Jackson , w e  e-upand 

1 
i 

: 

i 

I 

i 

i 

where we have defined o = or+ iy and aasurned a pr ior i  that << 1 
r 

4 

as 5 0, The quantity f (u) is defined by p ( u )  = Srn dZvL fG(vl) 
-@ 

-4- 4 
4 

where v is the t\y;o-dimensional vec tor  corzyment of v, 1 normal to 1i1, 

Substituting equation (26) into (25) and oetting rea? E& irnrrginary 
1 

parts equal to zero,  we obtain 
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Using tho dieperaion relation, equation (27a), it can be shown that 
, 

t 

BO that, in the long wavelength limit, 

c 

9m(Ile+ si+ IZe+ IZi+ 13e+ 134 . ( 2 9 )  
1 1 

where I<, I 'm''?p 

a) Contribution from the Collieional Part 
TCT 

According to the definition8 given in  Section 11, 
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--c 

where an integration by par t s  on v1 has  been performed and the value 
- 4 3  + - c 4  

Write 

k2 = k2e2 = k (1; -t c21), where c2 is a unit vector in the direction 

of k2, c2,, ie  the component of c2 paral le l  to  g (or G) 

is the component perpendicular to  g (or  G). 

of x(kZ)  haa been used. Define Q J vl- v2 and G = vl- v2' 
---c 

-c -c 

2 211 
3 

and 
-.c -.c 4 

Writing k2 in cylindrical 

coordinntos and performing the kZl l  integration wo find 

where, to prevent a cloee collision divergence in the k integration, 

we have cut off the integral. For  electron-electron encounters the usual 

cut-off i s  taken to be the Landau distance k i E  7 the average distance tTj '  
of closest  approach for a binary collision. 

however, where the formation of bound statce i e  a poesibility, the cut-off 

is not well defined. 

( 6 )  is the de Broglie wavelength k T  = (&T) Presumably,  if 

the particles do not approach closer  than this distance,aIld k; >.> ,. 0' 
the range of the nuclear forces, a bound state will not be formed. 

F o r  elcctrorr-ion collisions, 

One possible cut-off suggested in rcferetieca (4) and 
-1 b 2  1/2 . 

Performing the kZI integration, and using the fact  that 
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where ,X is the unit dyadic, we obtain - 

fo r  where kM = kL for  electron-electron collisions and k M a k T  

electron-ion encounters. Utilizing the relation 
4 - 4  

-il ' (v -v ) -- - - 1 2 (I  *a)(.( * b )  
1 d 3 1 e  I *  

- - t - c 3 c - c  1 2"" 

G 
7 [ g  ( a * b )  - ( g . a ) ( g * b ) l  =7 

lr 
(33)  

and the one obtained by changing g - G, equation (32)  can bo written 

m where for convenience, we have taken the infinite ion m a s s  l imit  ~;; i+ 0, 

Fo(V2) = 6(V2). Note that v1 hae been broken into two components, 
-c 

-.c 
u and vu* The first i a  parallel  to % and the second ie normal to it. 

i 
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To go fur ther  we shall approximate f by its Vlaeov equation 

solution. Thie is justifiable eince we only require our results accurate 

(cf. ref. 3). Recall that the integration 1 to first order  in  E = . 
path for  the u integral is along the rea l  axis. This is equivslent to  xDn 

taking the principal value integral for where In the long 
4 4  

and 2 wavelength limit, keeping terms up to ordor % a  the vz,  vl 

integrations can be performed straightforwardly in that order, with the 

result 

where 
2 "2 4nne = L k 2  kD =; KT 2 D  I 

Then 

(35) 

The positive contribution arisea f rom the factor (1 - e') and from 
0, dk 

the expaneion of the factor 3 
independent term. 

Q r  

which appears in front of the wavelength 
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(b) Contribution f r m n  the Collective Part 

F r o m  Section 11, 12e and 12i can be rewritten 

-+ 3 

Letting v1 = u s  t vlI where i a  a unit vector in the direction 
4 -.c 4 -c 

- of k and vu is the component of v perpendicular to k it is a 1b 1 1’ 
4 .-c 4 

(and V ) and vu 2 straightforward calculation to per form the 

integrations. 

v2 

In the infinite ion ma56 limit we obtain 



+ - +  
kl' k2 

6 =- and where, in accordance with earlier remarkls, K T  where f3 = ';;; 

-:.le are takixg t h e  principal value iritegra! fer t he  u integratinn, 
S"2 

We now perform a long wavelength expansion, noting that 

and 

x ( &-Z2 

After performing the u and 5 integrations, in  that order,  we find 

T = o t, and y = k2/kD. It is seen that a t e r m  independent 0 0)  

where w = - 
P 

of 5 eurvives f o r  the ion part  whereas,  becauee of cancellation, this t e r m  
w *  P 

does not appear in the electron part. 



i 
-22-  

A l l  of t h e s e  integrals can be reduced to two typee, viz. 

i 

. .  . 

end 

N 

N 

whore $2 - 
IZi. Tho integrals N 

doing this is given briefly in Appendix A. 

far the intcgrale in  I 2e and a= w for  the  intogsale in - 72 
can bo performcd analytically, Tho method for  

6 

j 
It will be t reated in grea te r  I 

I detail  in a future publication. 

After coneiderable labor, we obtain the results 

kl" 
-2 
ICD 

n 

I k' [ 0 . 4 8  t iO.971 
n 7 2  

w 
[0.0475 t i ~ O . 0 3 0 8 l -  Z 7 Or 

3 

- .1" 
-2 
kD 

- 
n 

(44) 

[-0.2120 p 
- i 0.16811 , (45) 

The reduction of the t e r m s  13, and 13i followa exactly the eame 

procedure just  outlined for I?- LIY and Izi. Hence we only give the results: 
2 2 1<3 

w; lc- TT 

= - 2 2  -7 '' y i  "-372.1 r -0.2912 + i 0,03211 (46) I3 e 
J J  
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contribution independent of k i s  found. 

Collecting all of these te rms  we now obtain 

b -3 Z CC) kD w 
3 -0,031-& y - 713,2 -]; .1” -2 n [1.00 +- 0.158ZI 

7T kD 

I 

-3 k2 r k - 1  
- a  
k” D 
n n I1 - (0.0929 t 0.0734Z) -- IJ J j (49) 

z 2 
0,0475 - f 3 

lCD w b 

P 

I 

Part of the k2 contribution to the damping waa obtained by expanding a 

2 2  
P 

factor w / a r  which appeared in the lowest o rde r  t e r m  of Izi. 
I 

IV. Discussion and Conclusions 
I 

The effects of electron-ion and electron-electron correlations on i 

the damping and dispersion relation of plasma oscillations have been I 

studied by use of the BBGKY hierarchy. W e  have seen that the linearized 

equations for  the electron-ion and electron-electron correlation functions, 
I 

which are integrn -differential equations, could be simplified by substituting 

an approximate solution of these functions into the integral  terms.  It wa8 

then possible to aepa’ate the correlation functions into a collisional pa r t  

2nd a ccrllective part ,  each Jjffocting the plasma oacillations in different 

wayn, 

In order to facilitato fur ther  discuseion, wc aummarizc ou r  

resul ts  as follows: 
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3 -2 

1 5 kil - In (0.707 r kL ) - v p  D n cD 

c kl" 
"2 ICD 

-3 

- In n 

kD 

2 -3 
" k 

- 2  a 

L 1 u  yb 

P 
3 l n  11.30)- '-7 - -2 -1n (1.95) 

n3 26./2 kD 
- a -  
w 

1 -15.31-2 In (1870) 

(50a) : 
I I 

i 

k 
(0.707 ) 

kD 

f 

i ( 5 0 4  
I 

The damping y o  is the ueual Landau damping which can bc obtaincd in 
I 

"eelf  cnnqistent field" theory; y, is the damping resulting from - 
collisional correlation effects, and yb ie  the damping which reoults  f rom 

collective correlation effects. In equation (SO), the combined effect of 

' 
i 

these terms is given. 
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We oee that pa i r  correlations affect plasma oscillations in  

severa l  striking waye. Most important is the appearance of a darnping 

which does not vanish in tho l imit  k 0, and which will be the principal 

damping mechanism fo r  k << kD. The presence of thio t e r m  emphasizes 

the importance of electron-ion correlations, even in the infinite ion , ~ a s g  

2 limit, for  electron-electron correlation damping ie proportional to k . 
The reeult which we have found can be compared with the result 

N-2 

obtained from P e r e l  and Eliashberg4 *. 
quite good especially in  light of the ambiguity in  the upper limit cut-off. 

Another interesting effect of electron-ion correlations, ag seen 

The agreement is seen  to be 

f rom equation (51), is the small  correction to the Langmuir plasma 

frequency which has  not been discussed previoualy. 

to interpret  this correction as a small  increaeo in  the effective mass of 

the electrona. 

to k%; is negative. 

It seems roaaonable 

Also, we observe that the correction which i a  proportional 

We have already mer,timed that Tchilcawa' and Willie' studlcd the 

cffocte of electron-olcctron correiatione on plaarna w ~ ~ c 3 9 .  

electron correlation etju3tion w.rEic,h they solved is found by dropping all 

but the self-consistent field t e r m s  from aqiiatioii (2). 

reeponsible for dynamical shielding (the integral t e rms)  have been neglected 

and the t e r m s  responsible f o r  the main s t ructure  of the Fokker-Planck 

'Their conductivity is related to our  damping according to y = 2rRe u(u ). 

The. clcctron- 

Thns the terms 

P 



equation have been dropped. The results which are equivalent to theirs  

are found from our  12e calculation. 

be made f rom the following list: 

The comparison of the resul ts  can 

a = 1.05 b = - 0.028 Ichi  kowa 

i l i 1 1 . i ~  

Present Authors 

a = 9 . 2  b = - 17.6 

b = - 3.89 a = -1.2795 

where yp is the classical Landau damping which ie a negative quantity. 

c 



i 
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APPENDIX A 

We wish to evaluate the integral 

W e  write 

whe re 

Let p = - ia, Then 

- 

where 6: is the Laplace t ransform operation. 

From formula (5)# page 176, of reference (17), we find 

1 .c{ e7 erfc 47 } -f 
JP (JP +I) . 

Then, using formula (23), page 131, of reference (17), we obtain 
- 2  

7: j z2 dIc -Z zc H (Z)  f (-1) c J . 

I 

(A -1) 

i 

i 

(A-3) 

(A-4) 

(A-5) 

Although p is complex, the r ea l  part ,  which gives a damping, leads 

only to higher o r d e r  corrections for the damping and diapersion. Thus 
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w e  sst  p = - io where is now taken a8 real. Then 
-3 

- 2  

Theao integral0 have been computed fo r  0 = 1 and lId-2 and j 

and the resulta will bo given in a future publication. 

0,1,2,3,4,5 

I 

! 

t '. 
t 
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